
Utilizing Python to Manipulate Geostationary Data

By: Batoul El Sayed Mohamad

Mentor: Prof. Tarendra Lakhankar

Roadmap

Plotting graphs

03

01

Familiarization with plotting bar graphs line graphs, etc.

Python Intro

Utilizing necessary packages for mapping

Creating NYC map for Precipitation Plotting Choropleth map as well as a bar graph

Using netCDF files from GOES R-16 Reading netCDF files with variables like radiance and

05

variables like radiance and plotting geostationary map

Image Files

Reading and manipulating png, jpg, and tiff image files

Reading Image Files, and Brightening them

In [2]: M f = open ('earth.jpg', 'rb') print (f.readlines()) for line in f: print (line) 4\x03\x05\x04\x04\x04\x05\x05\x05\x05\x05\x06\x07\x0c\x08\x07\x07\x07\x07\x0f\x0b\x0b\x0b\t\x0c\x11\x0f\x12\x12\x11\x0f\ x11\x11\x13\x16\x1c\x17\x13\x14\x1a\x15\x11\x11\x18\x18\x1a\x1d\x1f\x1f\x1f\x1f\x17\\$"\x1e\$\x1c\x1e\x1 x00\x00\x02\x03\x04\x05\x06\x01\x07\x08\t\xff\xc4\x00\$\x10\x02\x01\x03\x03\x02\x04\x03\x05\x06\x05\x06\x03\x 02\x02\x00\x17\x01\x02\x03\x00\x04\x11\x05\x12:1A\x06\x13Qa"q\x81\x07\x142\x91\xa1#B\xb1\xc1\xd1\xf0\x08\x15 R/xe1/xf1\$3br/x82/x16C8/x92/xa24/xb2/xc2%Tcs/x83/x93/x17/x186Dd/xa3/xb3/xd2t/x94/xc3/xff/xc4/x00/x1b/x01/x0 11\x00\x02\x02\x02\x02\x02\x02\x02\x03\x03\x03\x02\x04\x07\x01\x01\x01\x01\x00\x01\x02\x11\x03i\x121\x04Aq\x05\x13"2 aq\x06\x81\x14\x91\xa1\xb1#3B\xc1\xd1\xe1\xf0\xf1R\x15\$\xff\xda\x00\x0c\x03\x01\x00\x02\x11\x03\x11\x00?\x0 0/xfb*/x8a(\xa0\n', b'(\xa2\x8a(\xa2\x8a\x00\xa2\x8a(\x02\x8a(\xa0\n', b'(\xa2\x8a)x00\xa2\x8a(\x0 2\x8a(\xa0\n', b'(\xa2\x80(\xa2\x8a\x00\xa2\x8a(\x02\x8a(\xa0\n', b'(\xa2\x80(\xa2\x8a\x00\xa2\x8a(\x02\x8a {\xa0\n', b'{\xa2\x80(\xa2\x8a\x00\xa2\x8a\x00\xa2\x8a(\x02\x8a(\x02\x8a(\x02\x8a)) n', b'(\xa2\x80(\xa2\x8a\x00\xa2\x8a(\x02\x8a(\x02\x8a(\xa0\n', b'(\xa2\x80(\xa2\x8a(\x02\x8a(\x02\x8a(\x02\x8a)) '(\xa2\x80(\xa2\x8a\x00\xa2\x8a(\x02\x8a(\x00\n', b'(\xa2\x80(\xa2\x8a\x00\xa2\x8a(\x02\x8a(\x00\n', b'(\xa 2\x80(\xa2\x8a\x00\xa2\x8a(\x02\x8a(\x02\x8a(\xa0\n', b'(\xa2\x80(\xa2\x8a\x00\xa2\x8a(\x02\x8a(\xa0\n', b'(\xa2\x80

In [3]: M f = open ('earth.jpg', 'rb')

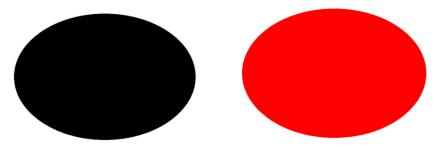
newfilew - open ('newfilew.jpg' , 'wb')

for line in f: newfilew.write(line)

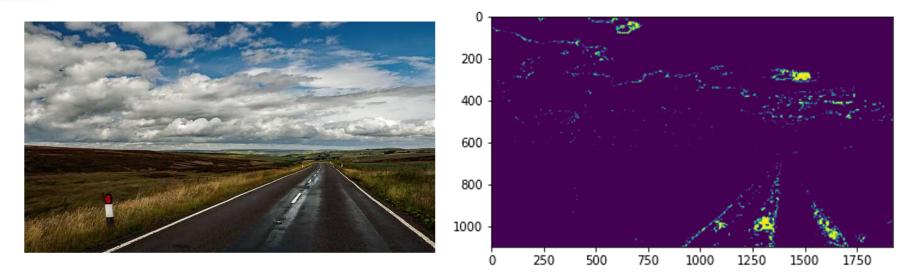
In [3]: M from PIL import Image, ImageEnhance

img=Image.open("nature.jpg")
img_brightness_obj=ImageEnhance.Brightness(img)
factor=int(input())
enhanced_img_brightness_obj.enhance(factor)
enhanced_img.show()

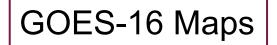
enhanced_img.save("nature_bright.jpg")

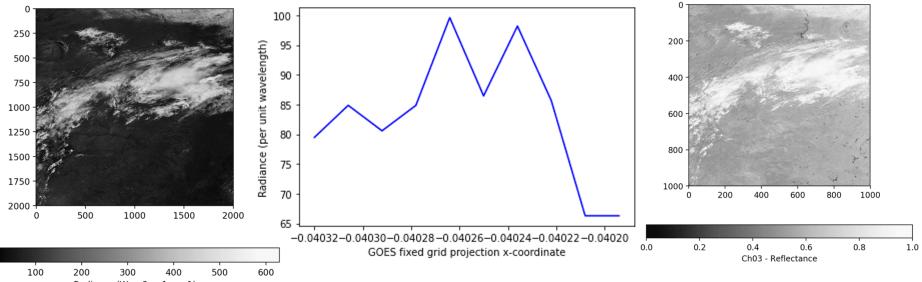

#factor > 1 Brightness of Image increases according to given factor

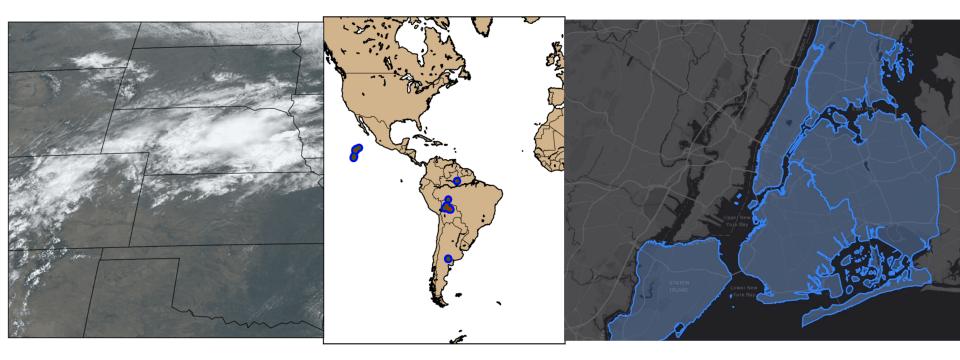
#factor < 1 Brightness of Image decreases according to given factor


Creating a Color Detector

RGB color code: (0, 0, 0) RGB color code: (255, 0, 0)


import cv2
import numpy as np
from PIL import Image


image=cv2.imread("oval.png")
image[np.where((image==[0, 0, 0]).all(axis=2))]=[0,0,255]
cv2.imwrite('oval2.png',image)


• • •	Colors	
	HEX: #cbbdac	ſ
	RGB: rgba(203,189,17 <	2 ()
Show more		
	Use Your Image	
	ata protection is important! ent. `The magic happens in browser.	

Radiance (W m-2 sr-1 um-1)


GOES-16 maps and NYC GeoJSON

NYC Precipitation Map

Precipitation over NYC on Jan 11, 2013

Acknowledgments