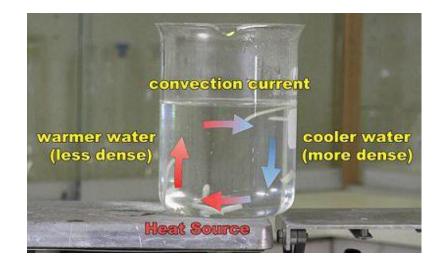
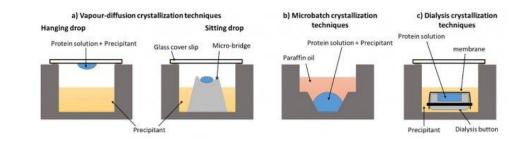
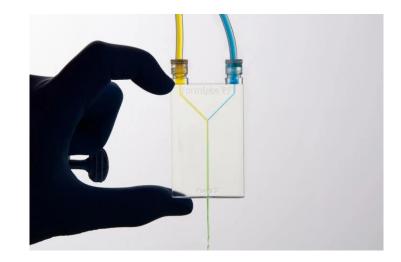
Crystallization of High-Quality Proteins using Microfluidic Devices

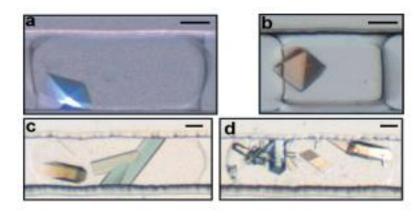
Ilya Avros, Hansen Pan, Jack Yakoub, Mohammed Bah, Jonathan Fey, Charles Maldarelli, Jing Fan


The City College of New York



Introduction


- Increased interest by the pharmaceutical industry for reproducible methods for growing large, high-purity protein crystals.
- Current batch based methods of growing protein crystals are inefficient.
 - Influence of convection.
 - Expensive Materials.
 - Relatively low yield of ideal crystals for therapeutic applications.



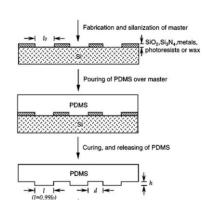
Microfluidic Approach

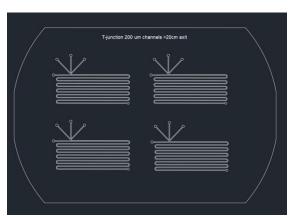
- Microfluidic approach allows for a higher
 - degree of control.
 - Microgravity environment.
 - Minimized Reynolds number.
 - Concentration gradient.
 - Less material wastage.

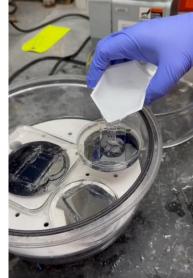
Materials/Manufacturin


- AutoCAD drawings.

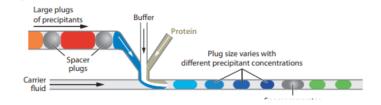
g

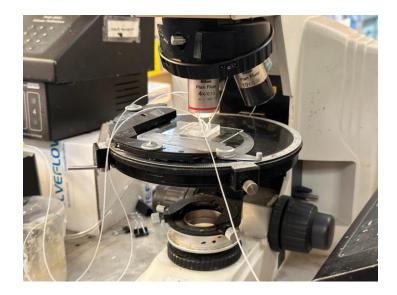

- Soft Lithography with minor modifications.
 - Outsourced production of UV


masks.


- Lamination using 200 micron

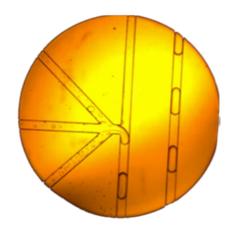
- PDMS based devices.
 - Plasma binding to glass slides
- Channels treated with Aquapell.

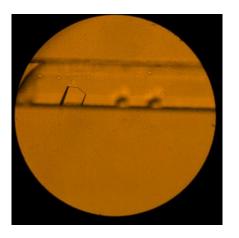


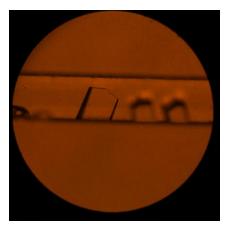


Experimental Testing

- Dispersed Phase:
 - Hen Egg-White Lysozyme dissolved in deionized water: 105 mg/ml.
 - NaCl: 1.5M dissolved in deionized water.
 - Titration of 3M Sodium Acetate Trihydrate with
 99% acetic acid: pH 4.5.
- Continuous Phase:
 - Hydrofluoroether (HFE) oil with 2% w/w
 - fluorosurfactant.




Results


- Dispersed phase flow rate:
 - 500 $\mu L/hr.$
 - Total: 1500 μL/hr.
- Continuous phase flow rate:
 - $2500 \,\mu L/hr$.
- Monodispersed generation of droplets.
- Crystallization observed over 6-day period.
 - Nucleation approximately 24 hours after

droplet generation.

- Further crystal growth observed 5 days later.

Future Directions

- Improved sealing of stored droplets.
 - Evaporation of continuous phase.
 - Coalessence of aqueous droplets.
- Backflow into inlet channels.
- Collection of data.
 - Impractical methodology for monitoring several devices.

References

ACS Publications. (n.d.-a). https://pubs.acs.org/doi/10.1021/ja037166v

Convection current in Beaker warm water rises because it is less dense than cool water. LIACOS EDUCATIONAL MEDIA. (n.d.). https://www.liacoseducationalmedia.com/shedding-light-on-heat-episode-5-heat-transfer/attachment/convection-current-in-beaker-warm-water-rises-because-it-is-less-dense-than-cool-water

France, Germany and Sweden: Phase diagram crystal growth. Phase diagram - The Road to the ESS - About - SINE2020 portal. (n.d.). https://sine2020.eu/about/the-road-to-the-ess/phase-diagram.html

Guide to Microfluidics and Millifluidics, and lab-on-a-chip manufacturing. Formlabs. (n.d.). https://formlabs.com/blog/microfluidics-millifluidics-lab-on-a-chip-manufacturing/

RF;, L. L. (n.d.). *Protein crystallization using microfluidic technologies based on valves, droplets, and Slipchip*. Annual review of biophysics. https://pubmed.ncbi.nlm.nih.gov/20192773/

Soft lithography | annual Review of Materials Research. (n.d.-b). https://www.annualreviews.org/doi/10.1146/annurev.matsci.28.1.153