Effects of climate change on bridge scour reliability

Justin Lin

Mentors: Prof. Naresh Devineni and Michel Ghosn

Purpose of this study

- Over 55% of bridge failures in the United states are caused by flood-induced scour
- Climate change increases the frequency of extreme precipitation, leading to larger and more frequent floods
- A new reliability analysis framework should be created accounting for the effects of climate change on bridge scour design

Experimental site

- The Schoharie Creek is in the Catskill Mountain region of southeastern New York is the experimental site
- 115 years of peak flow and precipitation data from 1908-2022 is available
- A statistically significant long term, increasing trend on peak flow is observed at the 5% rejection level

Calculation of scour depth

- The bridge foundation depth is designed for a 100-year design flood. The bridge reliability is assessed over a service life of 75 years.
- Y0 value was obtained using solver functions for each flow rate when using the theoretical Manning's equation
- λ_{sc} is a bias correction factor

$$\begin{aligned} y_{expected} &= 2\lambda_{sc}y_{0}K_{1}K_{2}K_{3}K_{4}\left(\frac{D}{y_{0}}\right)^{0.65}Fr^{0.43}\\ \lambda_{sc} \sim Normal(\mu = 0.55, cov = 52\%)\\ \eta \sim Lognormal(\mu = 0.028, cov = 28\%)\\ K_{3} \sim Normal(\mu = 1.1, cov = 5\%) \end{aligned}$$

	Variable	Definition	Assumed Value
$-2v K K K K (D)^{0.65} F^{0.43}$	b	River/creek width	265 ft.
	Kı	Nose-shape of pier coefficient	1
	K_2	Angle of flow and pier coefficient	1
$y_{\text{max design}} = 2y_0 \Lambda_1 \Lambda_2 \Lambda_3 \Lambda_4 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	K3	Streambed condition coefficient	1.1
(\mathcal{Y}_0)	K4	Bed material size coefficient	1
	D	Pier diameter	6 ft.
	S	Slope of streambed	0.3%
		$F_0 = \frac{V}{\sqrt{gy_0}}$ $Q = A_0 V$	
$v_{max} = 15.21 tt$		$O = b v_0 V$	
ymax aesign		£ 0,0	
	$V - \Phi R^{(2)}_{(3)} S^{(1)}_{(2)}$		
0_{1} - 52 449 cfs		$V = -\frac{1}{n}K + S$	
$Q_{design} = 52, \pm 700$			
		$\mathbf{p} = by_0$	
		$K = \frac{1}{b+2v_0}$	
		5.1290	
		$Q = by_0 \frac{\Phi}{n} \left(\frac{by_0}{b+2y_0} \right)^{(1)}$	$S^{(\frac{2}{3})}S^{(\frac{1}{2})}$.

Rating curve

- Non-linear regression was performed to obtain an equation relating measured gage height and peak flow
- 5 and 95 percentile for Manning's coefficient was used as the bounds due to uncertainty in the coefficient
- Regression equation falls within bounds for higher values of flow rate
- Theoretical values of y0 were obtained using Python's solver function
- Rating curve was used in place of theoretical equations for more efficient computations

Reliability analysis

- Monte Carlo simulations were performed for safety factors applied on design scour depth ranging from 0.1 to 2 to obtain corresponding reliability index
- For non-stationary models, Gumbel parameters were estimated using maximum likelihood estimation method (MLE) as a linear function of time, and separately as a function of precipitation using historical data
- Future precipitation predictions from 2023-2097 were obtained from 20 different climate change models, for both 4.5 and 8.5 emission scenarios

	Location, α_u (intercept)	Location, β_u (slope)	Scale, $lpha_{\gamma}$ (intercept)	Scale, $oldsymbol{eta}_{\gamma}$ (slope)
No Climate change	13376 cfs	0	8494 cfs	0
Time dependency	12131 cfs	29.67 cfs/year	7198 cfs	24.41 cfs/year
Precipitation dependency	12131 cfs	42.7 cfs/year	7197 cfs	36.95 cfs/year

 $Q \sim Gumbel(\mu_t, \gamma_t)$ $u(t) = \alpha_u + \beta_u * t$ $\gamma(t) = \alpha_\gamma + \beta_\gamma * t$ $u(p(t)) = \alpha_u + \beta_u * p(t)$ $\gamma(p(t)) = \alpha_\gamma + \beta_\gamma * p(t)$

Results

- To achieve a selected reliability under a possible future scenario, the design depth should be multiplied by the corresponding safety factor. (i.e. for an index of 3.5 and no climate change: 15.21 ft * 1.31)
- There is a large uncertainty associated with the bias correction factor

Reliability Index

	No climate change	Time dependent	RCP 4.5	RCP 8.5
Safety Factor = 1	2.5	2.25	2.44	2.43

Safety Factors

Reliability Index	No climate change	Time dependent	RCP 4.5	RCP 8.5
2.5	1.0	1.08	1.02	1.02
3	1.15	1.23	1.17	1.17
3.5	1.31	1.4	1.33	1.33

Future direction

- This reliability analysis framework will be applied or other big rivers within the United States and will also be tested for various service lives.
- Multiple trend link functions will be explored beyond the linear link assumption that was assumed in this study for the Gumbel parameters.
- The current study uses a bias correction factor proposed by Johnson et al (Probabilistic bridge scour estimates). Future studies will explore possible updates to the bias correction factor if any.

Acknowledgements

- Professors Naresh Devineni and Michel Ghosn
- National Science Foundation